
Maximum flows and
minimal cuts

Filip Malmberg

MSF cuts I

A Minimum Spanning Forest with respect to a set of seed-points
divides a graph into a number of connected components. Thus, it
defines a cut on the graph – a MSF cut.

A cut given by a minimum spanning forest maximizes

min
e∈S

(w(e)) (1)

among all cuts that separate the seed-points.

In the above equation, the weight w(e) of an edge represents the
dissimilarity between the vertices connected by the edge.

Thus, we are maximizing dissimilarity across the cut.

MSF cuts II

A Maximum Spanning Forest with respect to a set of seed-points
divides a graph into a number of connected components. Thus, it
defines a cut on the graph – a MSF cut.

A cut given by a maximum spanning forest minimizes

max
e∈S

(w(e)) (2)

among all cuts that separate the seed-points.

In the above equation, the weight w(e) of an edge represents the
similarity between the vertices connected by the edge.

Thus, we are minimizing similarity across the cut.

MSF cuts

With MSF cuts, we only consider the maximum weight among the
edges in the cut.

There is no penalty for “large” cuts – this can lead to very “jagged”
boundaries in noisy images.

It seems interesting to optimize for a function that considers all edges
in the cut.

In this lecture, we will look at a method that computes cuts where
the sum of the edge weights is minimal.

Minimal graph cuts

Consider a graph G = (V ,E), where we have selected two vertices
s, t ∈ V .

A cut on G is an s − t cut if it separates s from t.

We want to find an s − t cut C that minimizes∑
e∈C

w(e) . (3)

Minimal s − t cuts

s t

"sink""source"

s-t cut

Figure 1: s − t graph cut

P-norms

The sum and the maximum are special cases of p-norms.

Let p ≥ 1 be a real number. The p-norm of a vector x is defined as

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

(4)

For p = 1, this is the sum of the elements of the vector. For p →∞,
it approaches the maximum of the elements.

If we can solve for the sum, then we can solve for any (finite) p-norm.
(We don’t really need to care about the p:th root)

Flow network, intuitive notion

s t

"sink"

"source"

Figure 2: Flow network

Networks

Definition, network

A network is a directed graph G = (V ,E) where

1 Two vertices s, t ∈ V are defined as the source and sink of G ,
respectively. The source has only outgoing edges and the sink has
only incoming edges.

2 a capacity function, c : E → R+ maps each edge to how much
“traffic” it can carry.

Flow

Definition, flow

Given a network G = (V ,E), a (s-t) flow is a mapping f : E → R+, such
that:

1 f (p, q) ≤ c(p, q) for all ep,q ∈ E . (Capacity constraint)

2
∑

q∈N (p) f (p, q) =
∑

q∈N (p) f (q, p) for all p ∈ V \ {s, t}. (Flow
conservation)

Maximum flow

The value, |f |, of a flow is the total amoung of flow being sent from
the sink to the source, i.e.,

|f | =
∑

p∈N (s)

f (s, p) . (5)

The maximum flow problem is to maximize |f |, i.e., to route as much
flow as possible from s to t.

Ford-Fulkerson theorem

Theorem

The maximum value of a s − t flow on G is equal to the minimum
capacity of an s − t cut.

Moreover, a maximum flow on G will saturate a set of edges that gives us
the minimum cut.

Computing minimum cuts/maximal flows

According to the Ford-Fulkerson theorem, we can compute minimum
s-t cuts by computing maximum flow.

We will look at one algorithm for computing maximum flows: the
Ford-Fulkerson algorithm [5].

First, we will consider a greedy approach to finding a maximum flow.

Towards the Ford-Fulkerson algorithm

Definition, augmenting path

Let G = (V ,E) be a network and let f be a flow on G . A path π in G is
called an augmenting path if

1 The origin of π is s and the destination of π is t.

2 f (p, q) < c(p, q) for all edges ep,q along the path.

A greedy algorithm

while There exists an augmenting path in G do
Send flow along that path

end

A greedy algorithm

s t

0,40

0,60

0,10 0,10

0,20 0,30

0,60

0,50

0,100,15

Figure 3: A network with zero flow.

A greedy algorithm

s t

0,40

0,60

0,10 0,10

0,20 0,30

0,60

0,50

0,100,15

Figure 4: Find an augmenting path.

A greedy algorithm

s t

20,40

0,60

0,10 0,10

20,20 20,30

20,60

0,50

0,100,15

Figure 5: Send flow along the path.

A greedy algorithm

s t

20,40

0,60

0,10 0,10

20,20 20,30

20,60

0,50

0,100,15

Figure 6: Find an augmenting path.

A greedy algorithm

s t

20,40

10,60

10,10 0,10

20,20 30,30

30,60

0,50

0,100,15

Figure 7: Send flow along the path.

A greedy algorithm

s t

20,40

10,60

10,10 0,10

20,20 30,30

30,60

0,50

0,100,15

Figure 8: Find an augmenting path.

A greedy algorithm

s t

20,40

20,60

10,10 0,10

20,20 30,30

30,60

10,50

10,1010,15

Figure 9: Send flow along the path.

A greedy algorithm

s t

20,40

20,60

10,10 0,10

20,20 30,30

30,60

10,50

10,1010,15

Figure 10: No more augmenting paths can be found. Label all vertices that can
be reached via non-saturated edges as “belonging to the source”.

A greedy algorithm

s t

20,40

20,60

10,10 0,10

20,20 30,30

30,60

10,50

10,1010,15

Figure 11: Label all remaining vertices as “belonging to the sink”.

A greedy algorithm

s t

20,40

20,60

10,10 0,10

20,20 30,30

30,60

10,50

10,1010,15

Figure 12: The edges on the boundary of this labeling form a minimum s-t cut.

The greedy algorithm may fail to produce the maximum
flow

The graph below has a unique maximum flow, where the flow on the
edge ev ,w is zero.
The greedy algorithm could choose {s, v ,w , t} as the first
augmenting path.

s t

2

2

1

2

2
v

w

The greedy algorithm may fail to produce the maximum
flow

Once the greedy algorithm increases the flow on an edge, it never
decreases it.

We need a mechanism to undo bad decisions!

Residual network

A network with the same vertex set as G . For every original edge e with
flow f (e) and capacity c(e), we add an edge with capacity c(e)− f (e) to
the residual network. We also add a reverse edge, going in the opposite
direction of e, with capacity f (e).

6/17v w

11v w

6

Residual capacity

Reverse edge

Ford-Fulkerson algorithm

while There exists an augmenting path in the residual graph of G do
Augment flow along that path

end

Augmenting flow

The bottleneck capacity of an augmenting path is the minimum remaining
capacity of any edge along the path. The following algorithm is used to
augment flow in the Ford-Fulkerson algorithm:

b ← bottleneck capacity of an augmenting path π
foreach edge e along π do

if e ∈ E then
Set f (e)← f (e) + b

end
else

Set f (e)← f (e)− b
end

end

Ford-Fulkerson algorithm, practicalities

At each step of the Ford-Fulkerson algorithm, we select an
augmenting path.

The running time of the algorithm depends on the order in which we
select the augmenting paths, and on the search strategy we use to
find a path.

Edmonds-Karp algorithm

The Edmonds-Karp algorithm is a specialization of the Ford-Fulkerson
algorithm. [3]

At each step, the algorithm selects a shortest augmenting path
(where the length of a path is the number of vertices in the path).

The algorithm can be shown to run in O(|V ||E |2).

Boykov-Kolmogorov algorithm

Another specialization of the Ford-Fulkerson algorithm, tuned for the
types of graphs commonly occuring in image processing [1].

The basic idea of the algorithm is to maintain two search trees, one
from the source and one from the sink. These trees are updated
during the execution of the algorithm, so we do not need to perform
the search for an augmenting path from scratch.

The theoretical running time is worse then for the Edmonds-Karp
algorithm, but it has been shown to be faster in many practical
scenarios.

An implementation in C is available:
http://pub.ist.ac.at/∼vnk/software.html

Interactive seeded segmentation

Hard constraints can be implemented with infinity cost terminal links.

Figure 13: Segmentation of bones in a CT volume using minimal graph cuts.

Metrication errors

We can think of the cost of a cut as the area of a surface separating
the two regions.

On a regular 2D or 3D grid, we will see metrication errors – signs of
the discrete nature of the graph representation.

Comparison, discrete distance transforms

Figure 14: Distances in discrete grids [2]. The weight of each edge is equal to its
Euclidean length.

Reducing metrication errors

Just like in the distance transform example, we can reduce
metrication errors by using a “larger” neighborhood system.

In fact, it is possible to construct a graph such that the weight of the
cut is arbitrarily close to the lenght (area) of the corresponding
contours (surfaces) for any Riemannian metric [2].

Reducing metrication errors

Figure 15: Distances in discrete grids [2]. The weight of each edge is equal to its
Euclidean length.

Shrinking bias

Since we are minimizing the sum of the edge weights in the cut, we
implicitly favour “small” cuts. This may or may not be what we want.

To avoid this issue, some authors [6, 4] have considered “normalized
cuts” that minimize ∑

e∈C w(e)

|C |
. (6)

Graph cuts as a general optimization tool

The ability to optimize cost functions of the form discussed here has
applications to many image processing tasks other than segmentation.

Examples:

Filtering (Labels are intensities).
Stereo matching (Labels are disparities or depths).

Image restoration

Figure 16: “Restoration” of noisy image.

Stereo disparity

Figure 17: Left: One image in a stereo pair. Right: Depth estimated with graph
cuts.

More than two terminals?

The examples on the previous slide have more than two types of
labels.

So far, we have only considered minimal graph cuts on graphs with
two terminals. Thus, we can only compute binary labelings.

Unfortunately, computing globally minimal graph cuts for more than
two terminals is NP-hard.

In the next lecture, we will look at a strategy for computing
approximate solutions to this problem.

Comparison, min-cuts and MSF-cuts

MSF-cuts

Advantages

Globally optimal, according to the max-norm.
Fast computiation.
Seed-relative robustness.
Handles any number of labels.

Drawbacks

No “smoothness term”, sensitive to noise.

Comparison, min-cuts and MSF-cuts

Min-cuts

Advantages

Globally optimal, according to the 1-norm.
Can be used to approximate continuous cut metrics.
Can be computed in polynomial time.

Drawbacks

Restricted to binary labeling.
Slower to compute than MSFs.

References
[1] Y. Boykov and V. Kolmogorov.

An experimental comparison of min-cut/max-flow algorithms for energy
minimization in vision.

IEEE PAMI, 26(9):1124–1137, 2004.

[2] Yuri Boykov.

Computing geodesics and minimal surfaces via graph cuts.

In International Conference on Computer Vision, pages 26–33, 2003.

[3] J. Edmonds and R. Karp.

Theoretical improvements in algorithmic efficiency for network flow problems.

Journal of the ACM, 19(2), 1972.

[4] A.P. Eriksson, C. Olsson, and F. Kahl.

Normalized cuts revisited: A reformulation for segmentation with linear grouping
constraints.

Journal of Mathematical Imaging and Vision, 39(1):45–61, 2011.

[5] L. Ford and D. Fulkerson.

Flows in networks.

Princeton University Press, 1962.

[6] Jianbo Shi and J. Malik.

Normalized cuts and image segmentation.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888 –905,
2000.

